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Abstract

The drag coefficient, as the most important parameter that characterizes particle

dynamics in flows, has been the focus of a large number of investigations. Although

good predictability is achieved for simple shapes, it is still challenging to accurately

predict drag coefficient of complex‐shaped particles even under moderate Reynolds

number (Re). The problem is that the small‐scale shape details of particles can still

have considerable impact on the drag coefficient, but these geometrical details

cannot be described by single shape factor. To address this challenge, we leverage

modern deep‐learning method's ability for pattern recognition, take multiple shape

factors as input to better characterize particle‐shape details, and use the drag

coefficient as output. To obtain a high‐precision data set, the discrete element

method coupled with an improved velocity interpolation scheme of the lattice

Boltzmann method is used to simulate and analyze the sedimentation dynamics of

polygonal particles. Four different machine‐learning models for predicting the drag

coefficient are developed and compared. The results show that our model can

well predict the drag coefficient with an average error of less than 5% for particles.

These findings suggest that data‐driven models can be an attractive option for the

drag‐coefficient prediction for particles with complex shapes.
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1 | INTRODUCTION

Particle‐fluid systems are widely applied in various fields, including

chemical engineering (fluidization), civil engineering (sedimentation),

and propulsion technology.1 The system consists of particles with

diverse polygonal shapes or geometries that are even more complex.

The properties and behaviors of these particles are pivotal to

the entire system. When studying the mechanisms of particle‐fluid

systems, the drag coefficient (Cd) is a fundamental parameter used to

characterize the interactions between particles and fluids.

For the drag coefficient of spherical particles, Stokes proposed

the first theoretical solution: for Re Re1:C = 24/d≪ . In the range of

Re2000 < < 30000, the drag coefficient of the sphere is approxi-

mately a constant value of 0.45. Notably, Clift et al.,2 Khan and

Richardson,3 and other researchers, have conducted extensive

investigations into the sedimentation behavior of spherical particles

influenced by gravity through both experimental studies4–6 and

numerical simulations.7,8

Previous research has shown that shape has a significant impact

on the drag coefficient of particles,4,9,10 which is difficult to
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determine. There is a need for comprehensive tools to model the

particle geometry and characterize particle dynamics in fluids. In

recent years, the discrete element method (DEM)–lattice Boltzmann

method (LBM) has been widely used and has shown accurate results

of sedimentation and flow for complex particles.11–13 The DEM

employs the Lagrangian approach to track particle motion in space

and time, whereas LBM acts as an efficient solver for Navier–Stokes

equations owing to its inherently kinetic nature, particularly benefi-

cial when dealing with intricate fluid–solid boundary conditions.14

There are two categories of approaches to coupling DEM and

LBM: diffusion‐interface approach and sharp interface approach.15

Although the diffusion‐interface method can achieve a smooth

transition between solid and fluid nodes, reducing hydrodynamic

fluctuations, its nonphysical diffusion interface representation limits

its accuracy. Previous research shows that the sharp interface

approach is second‐order accurate for the velocity, hydrodynamic

force/torque, and stress, whereas the diffusion‐interface approach

only holds first‐order accuracy when simulating laminar flows. The

most simple interface approach is the interpolated bounce‐back

scheme (IBB).16 However, the accuracy of this scheme decreases in

some situations because it approximates interfaces as step‐like

boundaries.

In addition to precise modeling techniques, building the correla-

tion between particle shape and the drag coefficient is also a chal-

lenging task. In the past, researchers attempted to investigate the

influence of shape on the drag coefficient using conventional ap-

proaches and obtain fitting equations based on experimental data.17,18

As shown inTable 1, shape factors were added to the drag coefficient

equation to establish the relationship between shape and drag

coefficient. Haider and Levenspiel4 proposed a general drag coefficient

equation applicable to both spherical and nonspherical particles.

Dioguardi et al.21 studied the drag coefficient of nonspherical particles

by utilizing the ratio of the equivalent diameter of a sphere to the

characteristic length of the particle. Yow et al.20 established an explicit

equation describing the influence of sphericity and Re on the drag

coefficient of particles based on experimental data from particles with

shapes such as spheres, cubes, and octahedra.

However, these studies are limited to specific or a few types of

particles. Therefore, there is a need for developing a method that

can broaden the range and diversity of particles studied to ensure a

higher level of accuracy. In the past few decades, machine learning

has emerged as a robust data processing framework and was applied

in various fields such as unmanned vehicles,22 image detection,23 and

natural language processing.24 Notably, machine learning, particularly

neural networks, has been successfully employed in fluid dynamics

and flow modeling in recent years.25,26 As shown in Table 2, several

researchers have demonstrated that the process of particle

sedimentation can be predicted by machine learning. Yan et al.28

employed artificial neural network (ANN) and radial basis function

neural network (RBFNN) to predict drag coefficients. The results

demonstrated that ANN can be used to establish the relationship

between a single shape factor (sphericity) and the drag coefficient.

The main goal of this article is to develop a generalized drag

prediction framework for arbitrary polygonal particles. As shown in

Figure 1, the framework can effectively take into account the flow

effect and particle shape. To accurately model the particles and

precisely simulate the sedimentation dynamics, the data set used for

training is generated by the improved DEM–LBM. The remaining

sections of the article are organized as follows. In Section 2, a brief

introduction is provided for DEM–LBM, methods for constructing

arbitrarily shaped particles, and machine learning. In Section 3, the

settling behavior of particles is analyzed in a two‐dimensional system.

Machine learning models based on the generated data set are

developed and compared. The conclusions drawn from the analysis of

this study are presented in Section 4.

2 | METHODOLOGY

2.1 | DEM–LBM

In this section, the DEM–LBM is introduced for simulating the sedi-

mentation of arbitrary polygonal particles. The fluid flow is simulated

using the lattice Boltzmann equation (LBE), which is a discretized repre-

sentation of the Boltzmann equation.31–33 The D2Q9 lattice model, as

shown in Figure 2, is used and the discrete velocities can be written as
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TABLE 1 Empirical equations of nonspherical particles.

Author Equations
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TABLE 2 Previous research of particles based on machine learning.

Author Year Main contribution

Yoon et al.27 2013 Predict the time‐dependent sediment suspension by artificial neural network (ANN).

Yan et al.28 2019 Use ANN to build the correlation of sphericity and drag coefficient.

Rushd et al.29 2021 Toward optimal machine learning model for terminal settling velocity.

Let et al.30 2023 Predict the minimum elutriation of the velocity of the binary solid mixture by GA‐ANN.

F IGURE 1 Flowchart of this work: (A) discrete element method (DEM)–lattice Boltzmann method (LBM) and (B) machine learning.

F IGURE 2 Discrete velocity vectors for D2Q9.

where C is the lattice speed parameter to be selected, defined as

x tΔ /Δ ( xΔ is the lattice size and tΔ is the time step). An evolution

rule34 for each distribution function which is updated as

x e xf t t t f t( + Δ , + Δ ) = ( , ) + Ω ,i i i col (2)

where fi is the probability distribution function, x is the position

of the local lattice, and Ωcol is the collision operator, here a single

relaxation time (SRT) collision model is used and is given as

( )
t

τ
f fΩ =

Δ
− ,i icol

eq (3)
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where τ is the relaxation time and f i
eq is the equilibrium distribution

given by




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e u e u u

f ωρ
C C C

= 1 + +
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i ieq
2

2

4

2

2

 
(4)

where ω = 4/90 , ω = 1/91−4 , and ω = 1/365−8 . Based on the

Chapman–Enskog expansion, the LBE can be recovered to the

Navier–Stokes equation. More details can be found in Ref. 34.

The macroscopic variables such as density and velocity vector can be

calculated, respectively, using the following equations:

∑x xρ f( ) = ( ),
i

i
=0

8

(5)

∑u x
x

x e
ρ

f( ) =
1

( )
( ) ,

i
i i

=0

8

(6)

DEM is a method proposed by Cundall and Strack35 that

directly solves the particles' motion. Newton's equations and

angular momentum conservation equations, respectively, govern

the translation and rotation of particles. These equations are as

follows:
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−1 c h
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−1 c h
(7)

where N represents the number of particles, mi and ai denote,

respectively, the mass and acceleration of particle i. The forces acting

include the gravitational force gmi , the hydrodynamic force F i
h, and

the contact force F ij
c. Ii represents the inertia tensor, and ωi is the

angular velocity vector. T ij
c and T i

h represent torques due to the

contact and hydrodynamic forces, respectively.

To simulate fluid–particle interactions, no‐penetration and

nonslip boundary conditions are enforced at the fluid–solid interface,

along with a calculation of hydrodynamic forces acting on particles.

The commonly utilized approach for this purpose is the IBB scheme.

The scheme divides the nodes involved as shown in Figure 3. The

fundamental concept involves interpolating the absent distribution

functions based on the available ones. The interpolation weights

depend on the distance q defined as

x x

x x
q =

‖ − ‖

‖ − ‖
,

f w

f s
(8)

Here, xw represents the point of intersection between the solid

surface and discrete velocity, xf denotes the fluid node, and xs is the

neighbor solid node. However, the conventional IBB schemes do not

always ensure nonslip conditions at solid surfaces. This will cause

a slipping error of settling velocity. To reduce the slipping error, an

improved velocity interpolation‐based bounce‐back scheme (VIBB)

introduced by Zhang et al.36 is used in this research. The missing

distribution function xf t t( , + Δ )i f LBM is given as

x x
e u

f t t f t ω ρ
C

( , + Δ ) = ( , ) + 6 ,i i i
i

f LBM ′
+

d ′ f
w

2


(9)

where f i′
+ is given by

x u xf t f ρ f t( , ) = ( , ) + ( , ),i i i′
+

d ′
eq

d d ′
neq

d (10)

fi
neq and ρ are interpolated with second‐order accuracy as follows:
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The density at xd can be evaluated as




ρ
qρ q ρ q

ρ q
=

2 + (1 − 2 ) , 0.5,

, > 0.5.
d

f ff

f

⩽
(12)

ud plays a crucial role in determining unknown distributions, and

it can be evaluated using the following linear interpolation:
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ud is determined by weighted averaging u*d and u**d .

The hydrodynamic force and torque that act on the jth particle

are given, respectively, as







( )∑F e u x e u xf t f t= ( − ) ( , ) − ′ − ( , ) ,j

i
i i i i
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w f w ′ f

j∈
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∑T x x e u x e u xf t f t= ( − )[( − ) ( , ) − ( ) ( , )],j
i

j i i i i
h

Γ
w p w f ′ w ′ f

j∈

 (16)

where Γj represents the set of all the discrete velocities that intersect

with the jth particle. The VIBB scheme, which combines the ideas of

F IGURE 3 Discrete velocity vectors for D2Q9.36 (A) q ≤ 0.5 and
(B) q > 0.5.
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IBB schemes and nonequilibrium extrapolation scheme, has been

proved to capture complex particle shapes with good accuracy.36,37 It

can maintain a sharp interface and re‐evaluate the hydrodynamic

force from solid nodes to fit the LBM kinetic nature.

2.2 | Shape factors

For particles settling by gravity g in a stationary fluid, the drag

coefficient is usually calculated by the following equation:

C
d g ρ ρ

ρ u
=

4 ( − )

3
,d

n s f

f p
2 (17)

where ρs and ρf denote, respectively, the density of the particle and

the fluid. Previous research4 suggests that a composite consideration

of shape factors is essential. However, integrating these shape fac-

tors into the equations is not simple. The characteristics of general

particle shapes can be considered and described by many shape

factors. As in Wachs's work,38 some shape factors formulations can

be simplified. The sphericity ϕ is defined by the following equation:

ϕ
C

C
= ,

circle (18)

where Ccircle and C denote the perimeters of the surface‐equivalent

circle and the polygon. Sphericity is the most common shape factor

used to describe the irregularity of particles. However, from a prac-

tical point of view, many particles have the same sphericity and such

a parameter does not fully characterize the particle, and it is usually

not easy to measure in three dimensions.

The surface‐equivalent‐sphere diameter can be transformed to

d
l

=
4

π
,c

p (19)

where lp is the projected length of the particle.

Ojha et al.39 introduced the Corey shape factor (CSF), which is

directly related to the dimensions of the particle. In the two‐dimensional

case, this factor simplifies to the aspect ratio (AR), which is the ratio

between the shortest and longest axes lengths and is defined as

d

d
AR = .

s

l
(20)

The shape factors chosen in this study are relatively empirical,

and they are recognized as being well characterized for the drag

coefficient of particles. For illustrative purposes, 10 particles with

different shapes are shown in Figure 4.

2.3 | Machine learning

2.3.1 | Neural networks

The structure of a neural network can be designed based on specific

tasks and requirements. Typically, it comprises three layers: the input

layer, the hidden layer(s), and the output layer. Each layer consists of

multiple interconnected nodes, also known as neurons. The number

of neurons plays a crucial role in improving the performance of

ANN. If the number of neurons is too small, the nonlinear predictive

performance may be reduced. Conversely, an excessive number of

neurons can lead to a decrease in convergence speed, resulting in

over‐fitting. Each node has a specific output function called an acti-

vation function. The connections between the nodes represent the

weighted values, called weights, assigned to the signals transmitted

through these connections. The output of the network depends on

the structural parameters, connection patterns, weights, and activa-

tion functions. In general, neural networks are intended to approxi-

mate some algorithm or function in nature or to express a logical

strategy. ANN and traditional machine learning models focus on

training to perform a target task by learning from a large amount of

data, which can effectively mine data in complex systems. However,

during the modeling process, the precision of ANN algorithms

depends greatly on the input layer, hidden layers, initial weights, and

thresholds. To compare the effect of training, four machine learning

F IGURE 4 Sketch of particles.
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models are built (genetic algorithms [GAs]‐ANN, ANN, random for-

est,40 and bagging41).

2.3.2 | Parameter optimization

In the field of machine learning, the selection of appropriate

hyperparameters is crucial for enhancing the accuracy of models.

Hyperparameters are manually set parameters before training the

model, which cannot be learned directly from the data. They define the

architecture of the model and control the learning process. Although

hyperparameters can be adjusted manually through trial and error, this

approach is only suitable for models with a small number of unrelated

hyperparameters.

To reduce the task of parameter tuning, automatic optimization

methods should be utilized. Decision‐theoretic methods such as Grid

search represent a straightforward method for hyperparameter optimi-

zation. They operate by defining a search space for hyperparameters,

then identifying combinations of hyperparameters within this space, and

finally selecting the combination that delivers the best performance.

However, meta‐heuristic algorithms, which are adept at tackling complex,

large‐search‐space, and nonconvex optimization problems, have garnered

significant interest from researchers. Among these algorithms, GAs42 are

considered a good choice for hyperparameter optimization. In our

research, GAs are employed to optimize the ANN weights and topol-

ogy.43 The process of GA is outlined as follows:

(1) Initialize the population. A real‐valued coding model is used to

randomly generate a set of initial weight vectors.

(2) Construct the fitness function. The inverse of the network squared

error is used as the objective function for optimizing the weights.

f
y y

=
1

∑ ( ˆ − )
,

i
n

i i=1

(21)

(3) Select individuals for crossover and mutation. The probability of

selecting an individual is

F x
f x

f x
( ) =

( )

∑ ( )
,i

i

i
N

i=1

(22)

where N denotes the number of population and n denotes the

random number between [0,1].

(4) Select the jth gene mij of individual i and mutate it with the

following equation:





m
m m m f e r

m m m f e r
=

+ ( − ) × ( ), > 0.5,

+ ( − ) × ( ), ≤ 0.5,
ij

ij ij

ij ij

max

min

(23)







f e r

e

G
( ) = 1 − ,2

max

2

(24)

mmax and mmin denote the upper and lower bound of mij, respectively,

e is the number of iterations, Gmax is its maximum, r indicates the

proportion of gene mij in individual i, and r2 is a random number.

The individual with the best fitness value is output until

the function meets a set value or reaches the maximum number

of iterations, thus improving the weight threshold and topology of

the neural network. To maximize the accuracy of models other than

GA‐ANN, grid search was employed to fine‐tune them.

2.3.3 | Model evaluation

To statistically assess the accuracy of the prediction model, four dif-

ferent evaluation metrics (mean average error [MAE], mean squared

error [MSE], root mean squared error [RMSE], and R2) are used in this

study; they are defined as follows:

 ∑
m

y yMAE =
1

( − ˆ ) ,
i

m

i i
=1

(25)

∑
n

y yMSE =
1

( − ˆ ) ,
i

n

i i
=1

2 (26)

∑
m

y yMSE =
1

( − ˆ ) ,
i

m

i i
=1

2 (27)

R
y y

y y
= 1 −

∑ ( ˆ − )

∑ ( ¯ − )
.

i i i

i i i

2
2

2
(28)

where, ŷi is the predicted value, yi is the measured value, and ȳi is the

average of the measured values. MAE is the average absolute difference

between the actual value and the predicted value, which quantifies the

average degree of deviation of the predicted value from the true value.

MSE is the average of the sum of squares of the difference between the

true value and the predicted value. It is often used as a loss function for

linear regression because it is easy to differentiate. RMSE is the square

root of the result of the MSE.R2 is a statistical measure of how accurately

a given model predicts a measured outcome; R2 close to 1 indicates

higher agreement between predicted and measured quantities.

3 | RESULTS

3.1 | Validation

A benchmark case about a single circle particle settling in the

Newtonian fluid is conducted to validate the DEM–LBM coupling

method. As in previous studies,44 the fluid is assumed to have a viscosity

of 0.1 g/(cm s) and density of 1.0 g/cm3. The particle has a radius of

0.125 cm and a density of 1.25 g/(cm s) . A uniform mesh of 201 × 601

is used in the current simulation. Considering the effect of gravity, the

particle moves downward. As shown in Figure 5, the variation of Re over

time during the particle settling process was compared with the results

from Wu and Shu.45 The results are consistent and show good agree-

ment. The maximum Re of the particle in the present computation is

17.12, which is close to 17.15 provided by Wan and Turek.46

322 | XIANG ET AL.

 27671402, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

sd2.12124, W
iley O

nline L
ibrary on [04/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fmsd2.12124&mode=


Given our objective of approximating the settling drag coefficient

of polygonal particles, it is crucial to consider the wall effect. Wicke and

Hedden47 pointed out that the wall effect is negligible for fluidization if

the wall width to particle diameter ratio is more than 10. However, for

irregular shapes, this ratio may need to be higher. In fact, ifW D/ (the

ratio of the computational domainW to the particle diameter D) is too

small, then there are other factors that affect the settling of particles.

One is that the particles are likely to hit the wall at higher Re due to

lateral forces, which can lead to a reduction in the settling velocity, thus

preventing proper observation of the correct settling behavior of the

particles. Second, the location of the initial release of the particles is

particularly important when theW D/ ratio is too small, which may lead

to different results. To control the effects of wall width on the drag

coefficient, simulations were conducted based on the same conditions

as described in Feng et al.48 Specifically, the channel widths are varied

and the drag coefficients are calculated for different values of W D/ ,

including 4, 8, 10, 15, 20, and 25.

The results are presented in Figure 6, which clearly shows that

increasing the wall width leads to a decrease in the drag coefficient of

the particles. This phenomenon can be attributed to a reduction in the

wall effect, resulting in an increased terminal settling velocity. Finally,

as shown in Figure 7, the accuracy of our drag coefficient calculations

was validated. The results align with those reported by previous re-

searchers,49 further supporting the accuracy of our simulations.

Moreover, for particles with complex shapes, the time required

to reach steady‐state sedimentation is typically greater than that of

spherical particles, implying a need for a longer length of channel.

3.2 | Particle settling dynamics

Considering the computational efficiency, the case in which W D/ is

20 and L D/ is 60 is chosen. The radius of polygonal particles is around

0.0075m. In settling problems, the particle's sedimentation motion is

driven by the density difference with the fluid. The particle density

ρ was set to 1.12 g/cm3; The fluid density, dynamic viscosity, and

other parameters are set according to Ten Cate et al.50 and Zhang

et al.17 Wall boundary conditions were applied at the boundaries. To

ensure acceptable accuracy, the diameter of the particles should be

larger than nine LBM cells. Note that in this work, the gravity given

by ρ ρ g(1 − / )f s is used, as suggested by Feng and Michaelides.51 Our

study focuses on the stable settling regime (Re < 100). This decision

serves a dual purpose: to maintain the stability of LBM numerical

simulations and to enhance computational efficiency through the

reduction of the channel length.

Figure 8 provides a visualization of the flow field around the

particles, with the color map representing the magnitude of fluid

velocity. When a particle undergoes rotation about the horizontal

axis, it experiences significant influences from horizontal forces and

exhibits a spiral trajectory, particularly at higher Re. This spiral motion

continues until the particle's maximum cross‐section becomes per-

pendicular to the settling direction.

In the case of low viscosity, the terminal velocity of particles may

exhibit oscillations and display unstable behaviors. This phenomenon

arises from the pressure gradient at the front end of the particle

generating torque, which ultimately leads to an increase in the final

settling velocity.

It should be noted that the settling velocity of particles, as shown

in Figure 9, can manifest in three different scenarios. First, the

F IGURE 5 Validation of a single circular particle settling. DEM,
discrete element method; LBM, lattice Boltzmann method.

F IGURE 6 Drag coefficient of particles at different channel
widths.

F IGURE 7 Comparison of drag coefficient for a single circle
settling: W D/ = 4.
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velocity gradually increases and stabilizes, typically occurring at lower

Re. Second, the settling velocity briefly exceeds the final settling

velocity before fluctuating around it. Third, the settling velocity

fluctuates around the final settling velocity and fluctuates around the

final settling velocity. The second and third scenarios often arise

when the particle configuration is unstable or when operating at

higher Re. To obtain the drag coefficient, the average velocity over

this period was artificially considered as the representative final

settling velocity, which may introduce certain errors.

Figure 10 shows the variation of settling velocities for the square

particle released at different angles at Re = 10. Under these condi-

tions, the square particle exhibits the second type of settling, where

the settling velocity changes due to the change in orientation during

the sedimentation process.

Figure 11 shows the trajectories of some particles during their

settling motion at Re = 10. It can be seen that particles with sym-

metrical shapes have smoother trajectory motion. Even at the same

Re, irregular particles exhibit unstable settling and tend to stick to the

wall. The drag coefficient curves for certain noncircular particles

were computed in a two‐dimensional scenario. The results clearly

indicate that, regardless of whether it is a two‐ or three‐dimensional

case, the irregularity of particles leads to an increase in their drag

coefficients within the fluid. In the Stokes regime, where viscous

forces dominate, there is a simple inverse relationship between

the drag coefficient and Re. The results of the drag coefficients for

particles with different shapes in the Stokes regime are shown in

Figure 12. It can be observed that the particle configurations are

stable, and the particles maintain a stable settling posture. However,

F IGURE 8 Contour plots of two settling particles: fluid velocity field.

F IGURE 9 Three different types of terminal velocity.
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as shown in Figure 13, when Re > 1, in the intermediate Re range

where both viscous and inertial forces are significant, the relationship

between the drag coefficient and Re cannot be described by a simple

linear proportion. Furthermore, for some particles, their configura-

tions may change (leading certain deviations) at higher Re, which also

contributes to the variation in the drag coefficients.

3.3 | Training process

The drag coefficient curves for over 100 particles were computed as

the data set for our ML model.

The mesh information and shape factors of particles built can

be found in Table 3. The sphericity distribution of the particles

established in this study is shown in Figure 14. To control the

variables, all particles had the same projected length on the x‐axis.

During the data preparation stage, normalizing the data obtained

from DEM–LBM simulations is essential. Data normalization

addresses issues related to scale units, range, and the inherent weight

effects of input variables. By normalizing the data, incompatibility

issues caused by these factors can be eliminated and ensure a more

accurate and efficient training process for the machine learning

model.

To achieve good training and generalization performance of

the model, it is necessary to split the data set into training and

testing sets. For model training, 70% of the data is utilized, while

the remaining 30% is allocated for testing purposes. This alloca-

tion allowed for a sufficient amount of data to train the model

effectively while also reserving a reasonable amount of data to

test its performance. The chosen ratio strikes a balance between

ensuring enough data for training and validating the model's ability

to generalize to unseen data. For the GA‐ANN model, the

hyperparameters are determined by the GA: The population size is

configured to be 40, the arithmetic crossover probability is set at

0.8, and the nonuniform mutation probability is defined as 0.01.

Additionally, the number of generations is specified as 100. If the

number of generations is too small, convergence may be difficult

to achieve. Conversely, if the number of generations exceeds a

F IGURE 10 Time series of the square particle released at
different angles.

F IGURE 11 Trajectory of particles.

F IGURE 12 Drag coefficient for different shapes: Stokes regime.

F IGURE 13 Drag coefficient for different shapes: moderate Re
regime.
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certain threshold, the algorithm may have already converged.

Continuing with additional evolution would be pointless and it

only increases time and computation resources.

The hyperparameters of the other models are determined by

grid search. The ANN model undergoes training with the Adam

optimizer, configured with a batch size of 10 and a network

architecture that includes two hidden layers, each with 15 neu-

rons. The learning rate is set to 0.001, and the decay rate is 0.7.

Using the parameter α for regularization (L2 regularization) helps

to prevent over‐fitting by penalizing large weights. Figure 15

illustrates the MSE loss curves of GA‐ANN and ANN, demon-

strating that both models have achieved convergence. Generally, a

standard ANN model tends to converge faster than the GA‐ANN.

In the case of ANN, the weights and biases of the neural network

are updated using a backpropagation algorithm or other optimi-

zation methods to minimize the loss function. This approach offers

higher computational efficiency and convergence speed, enabling

the loss curve of ANN to reach lower loss values more rapidly. On

the other hand, GA‐ANN combines GAs with ANN. In each genetic

generation, GA‐ANN optimizes the weights and biases of the

neural network using GAs. As GAs involve operations such as

selection, crossover, and mutation, and may require multiple

iterations of genetic generations for search, their optimization

process is relatively slower. Consequently, the loss curve of GA‐

ANN typically begins to exhibit a significant decline after a greater

number of epochs. Despite ANN achieving faster convergence

compared to GA‐ANN, GA‐ANN attains a smaller value of MSE.

3.4 | Prediction results

Four different evaluation metrics (MSE, RMSE, MAE, and R2) were

employed to quantify the performance of the models, and the

specific performance indicators for each model are shown in

Table 4. The results indicate that, compared with those of tradi-

tional models, all four evaluation metrics of the neural network

were improved. Figure 16 displays the comparison between the

predicted values and the actual values of the test set. When data

points fall on the reference line, it indicates a better fit, whereas

deviations on either side of the reference line indicate biases. In

the drag coefficient fitting, traditional machine learning models

exhibit an MAE of approximately 5%, which is larger than that of

neural network models.

In the Stokes region, all prediction models except GA‐ANN

exhibit some degree of deviation, potentially due to data set biases.

Variations in the settling behavior of different particles cause sig-

nificant differences in the drag coefficients at lower Re. For models

with poor generalization ability, this can result in obvious prediction

errors or over‐fitting. By combining the GA and ANN to optimize

the initial weights and thresholds and automatically select

TABLE 3 Particle information and shape factors.

Type Parameters Min Max

Edges (n) 3 15

Input Sphericity (ϕ) 0.593 1

Aspect ratio (AR) 0.400 2.02128

Diameter ratio (d d/n c) 1.858 2.545

Reynolds number (Re) 0.115 124.18

Output Drag coefficient (Cd) 1.127 86.44102

F IGURE 14 Sphericity distribution.

F IGURE 15 Loss curve of ANN and GA‐ANN. ANN, artificial
neural network; GA, genetic algorithm.

TABLE 4 Performances of different machine learning models on
data set.

Model MAE MSE RMSE R

GA‐ANN 0.0164 0.0016 0.0397 0.9983

ANN 0.0374 0.0050 0.0710 0.9948

Random forest 0.0545 0.0098 0.0991 0.9899

Bagging 0.0468 0.0090 0.0951 0.9907

Abbreviations: ANN, artificial neural network; MAE, mean average error;
MSE, mean squared error; RMSE, root mean squared error.
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the number of neurons in the hidden layer, the accuracy can be

significantly improved. Compared with unoptimized models, the

optimized models show a significant reduction in the error between

the predicted and actual values. Significant over‐fitting is elimi-

nated, and the optimized model's generalization ability is greatly

enhanced, indicating more accurate predictions. On the other

hand, the traditional machine learning models (random forest and

bagging) have larger training errors and lower accuracy compared

with the neural network model.

In summary, GA‐ANN can predict the drag coefficient of

particles with different shapes. Figure 17 shows the results of

simulation and prediction results of GA‐ANN. The prediction error

of results is within acceptable limits. For the sake of readability,

not all curves are displayed. The predictions from GA‐ANN for

shapes with existing research were compared with numerical

calculations from previous studies,52–57 and these comparisons

demonstrated good agreement.

4 | CONCLUSIONS

Obtaining the drag coefficient accurately is crucial for particle fluid

dynamics. However, the drag coefficient for particles with complex

shapes is influenced by small‐scale shape details and cannot be

described by a single shape factor. To address this issue, this article

developed a generalized framework based on machine learning for

arbitrary polygonal drag coefficient prediction. The framework con-

siders key sedimentation process parameters, including multiple

shape factors and Re. The main conclusions are as follows.

An improved coupling velocity interpolation scheme was applied

to construct the DEM–LBM code for simulating the sedimentation

dynamics of polygonal particles. This scheme reduced the slipping

error and improved the accuracy compared with the simple IBB

scheme. The results demonstrate good accuracy and stability, aligning

well with the existing research.

The prediction results based on the generated data set indicate

that the framework effectively captures the effects of shape and

flow, establishing a relationship between the shape factors, Re, and

drag coefficient, with an error less than 5%.

We further compared four different machine learning prediction

models and optimized their hyperparameters using GA and

decision‐theoretic methods. The findings indicate that the GA‐ANN

model presents a much better performance (MAE = 0.0164, MSE =

0.0016, RMSE = 0.0397, and R2 = 0.9983). This confirms the effec-

tiveness of GA‐ANN in developing a predictive model for the drag

coefficient of particles.

However, the current study also has some limitations, such as the

selection of the shape factors being empirical. Future studies will

F IGURE 16 Comparison between DEM–LBM results and predictions from machine learning: (A) GA‐ANN; (B) ANN; (C) random forest
regression; and (D) bagging regression. ANN, artificial neural network; DEM, discrete element method; GA, genetic algorithm; LBM, lattice
Boltzmann method.
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focus on three‐dimensional analysis and will take into account more

characteristic parameters.
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